The index of elliptic operators on compact manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Index of Elliptic Operators on Compact Manifolds

1. A. H. Clifford, Naturally totally ordered commutative semigroups, Amer. J. Math. 76(1954), 631-646. 2. , Totally ordered commutative semigroups, Bull. Amer. Math. Soc. 64 (1958), 305-316. 3. O. Holder, Die Axiome der Quantitât und die Lehre vom Mass, Ber. Verh. Sachs. Ges. Wiss. Leipzig Math.-Phys. Kl. 53 (1901), 1-64. 4. T. Tamura, Commutative nonpotent archimedean semigroup with cancellati...

متن کامل

Index Theory of Equivariant Dirac Operators on Non-compact Manifolds

We define a regularized version of an equivariant index of a (generalized) Dirac operator on a non-compact complete Riemannian manifold M acted on by a compact Lie group G. Our definition requires an additional data – an equivariant map v : M → g = LieG, such that the corresponding vector field on M does not vanish outside of a compact subset. For the case when M = C and G is the circle group a...

متن کامل

Index Theorem for Equivariant Dirac Operators on Non-compact Manifolds

Let D be a (generalized) Dirac operator on a non-compact complete Riemannian manifold M acted on by a compact Lie group G. Let v : M → g = LieG be an equivariant map, such that the corresponding vector field on M does not vanish outside of a compact subset. These data define an element of K-theory of the transversal cotangent bundle to M . Hence, by embedding of M into a compact manifold, one c...

متن کامل

Uniformly Elliptic Operators on Riemannian Manifolds

Given a Riemannian manifold (M, g), we study the solutions of heat equations associated with second order differential operators in divergence form that are uniformly elliptic with respect to g . Typical examples of such operators are the Laplace operators of Riemannian structures which are quasi-isometric to g . We first prove some Poincare and Sobolev inequalities on geodesic balls. Then we u...

متن کامل

Cohomologies and Elliptic Operators on Symplectic Manifolds

In joint work with S.-T. Yau, we construct new cohomologies of differential forms and elliptic operators on symplectic manifolds. Their construction can be described simply following a symplectic decomposition of the exterior derivative operator into two first-order differential operators, which are analogous to the Dolbeault operators in complex geometry. These first-order operators lead to ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1963

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1963-10957-x